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Stress and large-scale spatial structures in dense, driven granular flows
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We study the appearance of large-scale dynamical heterogeneities in a simplified model of a driven, dissi-
pative granular system. Simulations of steady-state gravity-driven flows of inelastically colliding hard disks
show the formation of large-scale linear structures of particles with a high collision frequency. These chains
can be shown to carry much of the collisional stress in the system due to a dynamical correlation that develops
between the momentum transfer and time between collisions in these frequently colliding particles. The

lifetime of these dynamical stress heterogeneities is seen to grow as the flow velocity decreases toward
jamming, leading to slowly decaying stress correlations reminiscent of the slow dynamics observed in super-

cooled liquids.
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I. INTRODUCTION

Granular materials are ubiquitous in nature and play an
important role in many industrial applications, yet the appro-
priate coarse-grained theories for the description of these ma-
terials remain elusive due to the rich phenomenology they
display in response to external perturbation [1,2]. A common
example of the unusual nature of granular systems is the
phenomenon of force chains, highly stressed extended linear
clusters first seen in experiments on static granular piles [3].
These striking inhomogeneities are thought to be responsible
for a host of observed nonlinear effects in static systems
including interesting features in distributions of contact
forces between particles [4]. However, the reason for the
existence of the force chains has not been determined; one
possible explanation is that correlations develop while the
material is flowing which then get “frozen in” when the sys-
tem comes to rest.

Spatial structures have been directly observed in experi-
ments on flowing granular materials [5]. More recently, mea-
surements of velocity correlations in the surface layer of par-
ticles flowing down an inclined plane have yielded a length
scale which appears to grow as the flow is arrested [6]. While
detection of such dynamical heterogeneities in numerical
studies has been more difficult, there is some evidence for
their existence in simulations of gravity-driven flow through
a hopper [7] and in images of the contact force network in
simulations of chute flow [8]. The presence of such struc-
tures will play a crucial role in determining the dynamics of
the flowing system, especially as the transition to a static
system is approached. The development of spatial and tem-
poral correlations near the transition to the static state must
be investigated carefully in order to understand the nature of
the transition from the flowing liquid state.

Dynamical heterogeneities have been observed in other
systems which exhibit a similar slow dynamics as the tran-
sition from fluid to solid is approached, such as colloids near
the glass transition. Fast-moving particles were observed to
be spatially correlated with a characteristic cluster size that
increased as the glass transition was approached [9]. In su-
percooled liquids, spatial inhomogeneities can be identified
via a time-dependent four-point (two-time, two-space) corre-
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lation function [10]. The interesting commonalities between
these disparate systems have been explored in the context of
the jamming phase diagram proposed in Refs. [11,12]. Tt
should be noted that in these studies the focus has been pri-
marily on the search for a common static signature [i.e., the
distribution of contact forces P(f)]. Thus the proper frame-
work to describe the dynamics of systems that have a jam-
ming transition remains an open question. If the presence of
dynamical heterogeneities governs the dynamics of these far-
from-equilibrium systems near the jamming transition, then
while the microscopic process by which these structures
form may vary between different types of systems, some
unified dynamical description may be applicable once the
structures have formed. The “soft glassy rheology” model
[13,14] describes soft, nonergodic systems such as foams and
dense emulsions and has successfully predicted many of the
experimentally observed results. Application of this type of
“traplike dynamics” to granular systems has also had some
promising initial results [15].

In this paper we explore the connections between dynami-
cal heterogeneities and slow dynamics in a simplified model
which allows us to focus on the essential effects of driving
and dissipation in a flowing granular system, while still re-
producing observable results from related experimental sys-
tems [16]. Simulations have been performed of a two-
dimensional gravity-driven system of frictionless, bidisperse
hard disks in a hopper geometry. The disks undergo instan-
taneous, inelastic binary collisions and propagate under grav-
ity in between collision events. Despite the simplified dy-
namics of the simulation, several interesting collective
effects are seen to emerge. As in previous studies [7], ex-
tended linear structures defined by inhomogeneities in the
spatial distribution of the collision frequency are visible, and
their presence has a measurable effect on distributions of
impulse and time intervals between collisions for a given
particle. In this study we observe that the particles which
make up the linear structures display a dynamic correlation
between their impulse and collision time which is reflected in
measurements of the collisional stress tensor; particles iden-
tified as part of the structures appear to experience higher
than average collisional stress compared with the remainder
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of the system. Using this measure of collisional stress we can
probe further into the nature of these structures and their
relevance to the dynamics of the system.

II. SIMULATIONS

The grain dynamics used in the simulations are similar to
those in Ref. [17]. Specifically, (i) at each interparticle colli-
sion, momentum is conserved but the collisions are inelastic
so the relative normal velocity is reduced by the coefficient
of restitution w; (ii) to allow the side walls to absorb some
vertical momentum we impose the condition that collisions
with the walls are inelastic with a coefficient of restitution
Myq i the direction tangential to the wall; and (iii) since we
wish to observe the system over many events, particles exit-
ing the system at the bottom must be replaced at the top to
create uniform, sustained flow. Note that collisions are in-
stantaneous and in between collisions the particles are driven
by gravity. To avoid the phenomenon of inelastic collapse the
coefficients of restitution u and w,,,; are velocity dependent;
if the relative normal velocity between particles or between a
given particle and the wall is less than some cutoff v, then
the collision is presumed to be elastic [18]. The flow velocity
v is controlled by adjusting the width of the hopper opening.
We also introduce a probability of reflection p at the bottom
which reduces the time needed to reach steady-state flow.
Typically, our simulations were done on bidisperse systems
(diameter ratio 1:1.2) of 1000 disks, with ©=0.8, u,,,;=0.5,

Uer=1X 1073, and p=0.5. The simulation was run for a total
time of 1 X 103 in simulation time units (smaller particle di-
ameter d, and gravitational constant g are both set to 1) with
the initial time interval of 5 X 10? discarded before recording
data to ensure the system has reached steady state. During
the total time interval of 500 over which we are evaluating
the data, a given particle will pass through the hopper 5-10
times depending on the flow velocity.

As the width of the hopper opening is decreased the av-
erage flow velocity decreases, and at some minimum open-
ing sustained flow is no longer observed. Close to this width
the mass flow exiting the hopper appears to become very
intermittent, with large outflow of mass occurring on short
time scales followed by long time intervals where few par-
ticles exit the system. Intermittent dynamics has also been
observed in simulations of flow down an inclined plane
where the angle of incline is approximately equal to the
angle of repose of the grains [8]. Additionally, some prelimi-
nary measurements of spatial velocity correlations in our
hopper simulations parallel to the flow direction indicate
long range correlations on length scales comparable to the
system size for slow flow velocities [19]. Spatial velocity
correlations with long length scales are also seen on the sur-
face of incline plane flow [6].

III. COLLISION FREQUENCY AND LARGE-SCALE
STRUCTURES

In studies of two dimensional freely cooling gases [20]
some evidence of dynamical large-scale structures forming
in the system was first observed by identifying all particles
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FIG. 1. Images of the system with particles colored according to
the collision frequency in the last time interval Ar=0.02 for
v;=0.86 (left) and v;=2.2 (right). (v) is defined as the mean
collision frequency (average taken over all particles) for that time
interval.

experiencing inelastic collapse as the assembly of grains
cooled. These particles formed linear structures within dense
clusters and experienced collision frequencies significantly
higher than that of the other particles in the system. Due to
the effect of driving in our flowing system, we do not ob-
serve inelastic collapse. However, we can ask an analogous
question: “How many collisions does a given grain undergo
in a given time interval Az?” The collision frequency for a
particular particle i in Az is given by v;=N;/At where N; is
the number of collisions experienced by particle i in Az. We
can construct images of our simulated system at regular in-
tervals and color individual disks according to the value of
the collision frequency for that disk. As can be seen in Fig. 1
particles with high collision frequencies form linear chains
reminiscent of the structures observed in two-dimensional
(2D) freely cooling gases and the transient solid chains pos-
tulated by the hydrodynamic model of Ref. [21]. These
chains often appear to terminate at the boundary of the sys-
tem, forming an archlike structure in the center of the hop-
per. From the pictures it is also evident that collision direc-
tion is typically oriented along the chain direction (i.e.,
particles within a chain collide with other particles in the
chain and not with neighboring particles that are not part of
the structure). Thus the velocities of frequently colliding par-
ticles are highly correlated in direction, and we can evaluate
the stability of this structure with respect to perturbations
arising from collisions with other (uncorrelated) particles.
Consider an initially isotropically distributed dense assembly
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of completely correlated disks and perturb one disk by giving
it a velocity v. The collision rule for two inelastic hard disks
i,jis [17]

v/ V; l+ul=vi-q+v;-q
= = q (1)
Vj Vj vVi-qQ— Vj q
where q is a unit vector along the center of mass line of the
colliding disks and v’ denotes the velocity of a given particle
after the collision. Rewriting Eq. (1) in terms of the relative
velocity of particle j to particle i before the collision &v(z)
=v,;—v; and after the collision 5V(t+Al‘)=V; —v;, we can ob-

tain an approximate expression for the time derivative of the
relative velocity in the limit of Ar—0:

aov()  1+p

7 A [-ov(r) -qlq. (2)

Define ¢, and g, as the components of q parallel
and perpendicular, respectively, to the initial perturbing
velocity. From Eq. (2) it is easy to see that (ddv,/dr)
=-C(fq) and (dov, /dt)=-CLq,), where C,
=[(1+w)/At)(bv(r)cos(6,,)) (6,, is the angle between &V
and q) and the angular brackets denote an average over col-
lisions. The factor C, can be taken outside of the angular
brackets when performing the average of Eq. (2) as the initial
relative velocity vector 6v is uncorrelated in direction with
the center of mass line vector q.

However, ¢ | is equally likely to be positive or negative so
that (g, ) ~0 while g, is always positive and so {(g;) > 0. Sub-
stituting this result into the above expressions for the time
derivatives yields {(dév,/dt) <0 and (dév | /dt)~0 indicating
that velocity differences parallel to the initial perturbation
will decay while velocity differences perpendicular to v will
remain. Given this, and the organizing influence of the in-
elastic wall collisions leading to velocities becoming normal
to the wall, the appearance of collisional chains anchored to
the wall becomes plausible.

IV. STRESS

The unusual rheology of granular matter in response to
external stress as well as the phenomena of force chains
prompt us to investigate stress in this simple model of flow-
ing granular matter. Specifically, are the frequently colliding
chains described in the previous section the dynamical ana-
log of force chains? We can explore this possible connection
by measuring the stress in our system and determining if a
correspondence exists between the collisional chains and the
spatial distribution of stress. Additionally, we can potentially
use the measured stress to calculate relevant time and length
scales associated with the structures, as well as making a
clearer connection between our model and other systems
with soft, glassy rheology.

As described in Ref. [22], macroscopic stress in discrete
particle systems develops as a result of two microscopic
mechanisms of momentum transfer: (a) transport of momen-
tum due to the fluctuations of the individual particle veloci-
ties (the kinetic stress ) and (b) transport of momentum at
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interparticle collisions (the collisional stress o). The total
stress tensor is then the sum of the kinetic and collisional
stresses. However, for the densities we observe, we find as in
Ref. [22] that the magnitude of the Kinetic stress contribution
is several orders of magnitude lower than the collisional
stress. Thus we will consider only the collisional stress con-
tribution in the analysis to follow. For a given particle i, the
pv component of the collisional part of the stress tensor at
time ¢ is given by

1
oli(0 =1 2 (o rilefy 3)

where u,v are Cartesian coordinates and I, is the impulse
transferred to particle i at collision a. The sum is taken over
all of the collisions experienced by particle i during time
t—Ar—t, where the interval Ar is chosen such that
(1)<At<1/v; where 7 is the time between successive col-
lisions for a particular particle. This constraint ensures that
the particle being evaluated experiences many collisions dur-
ing Ar but is not significantly rearranging relative to its
neighbors. There is a separation of time scales (which will be
demonstrated more concretely in the analysis to follow) that
ensures an interval Ar satisfying this constraint is easy to
locate. Note that for hard-disk collisions I, will always be
along r;,; therefore the I,-r;, term in the sum is simply
(d;+d;)1,/2 where d; and d; are the diameters of particle i
and the other particle involved in collision «, respectively.

Similarly to the images of the system at a given time 7
constructed for the collision frequency, we can make
complementary images of o.(r) (Fig. 2). For every particle
we calculate o(r) as described in Eq. (3), and extract the
maximum eigenvalue \,, along with the corresponding prin-
cipal axis. A line along the direction of this principal axis is
plotted at the particle position, and then colored according to
the value of \,, relative to the average value of the maximum
eigenvalue measured in that time interval (\). Figure 2
shows some sample images constructed in this way for the
same systems and times as in Fig. 1. Comparison of the two
figures reveals a strong correlation between the frequently
colliding particles and the highly stressed particles. Addition-
ally, the principal axis of the stress for the highly stressed
and frequently colliding particles is typically aligned along
the chain direction. There is also a lack of an obviously
growing length scale as v,— 0; however, time scales associ-
ated with these highly stressed structures show a significant
change with flow velocity as discussed below.

Note that the value of \,, will depend on the ratio
31,/ At, and thus, since the frequently colliding particles
experience many collisions in At (i.e., v;o< 1/ 7>(v), where 7
is the time between successive collisions for a particular par-
ticle), then the sum over I, can be large even if the average
impulse per collision is small. Thus \,, [and similarly o.(7)]
will depend crucially on the ratio of impulse I and collision
time 7, and any correlation between these quantities. There-
fore, to gain a better understanding of the correspondence
between the frequently colliding particles and the highly
stressed particles we have studied the joint distribution of
impulse and collision time P(1, 7).
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FIG. 2. Images of the system with principal axis corresponding
to the maximum eigenvalue \,, of the collisional stress tensor de-
fined during the last time interval A7=0.02 for v;=0.86 (left) and
vy=2.2 (right) plotted at the particle positions. The principal axis
line is colored and its width scaled according to the magnitude of
the maximum eigenvalue \,, (the thicker the line the higher the
value of \,,). Thin black lines indicate the principal axis of particles
experiencing less than the minimum stress plotted (0.3(\) for these
pictures). Note that these pictures were constructed for the same
time interval as the images in Fig. 1. (\) is defined as the mean \,,,
(average taken over all particles) for that time interval.

V. DISTRIBUTIONS OF IMPULSE AND COLLISION TIME

In previous work [7] we modeled recent experiments on
dense, gravity-driven monodisperse granular flows [16].
These experiments consisted of a quasi-2D system of mono-
disperse steel spheres flowing through a hopper. A transducer
(of size approximately equal to the diameter of the spheres)
was placed a short distance upstream from the opening at the
bottom of the hopper, allowing for measurements of impulse
normal to the hopper wall as a function of time. Both the
experiments of Ref. [16] and the simulations we performed
measured the distribution of impulses transferred at each col-
lision, P(I), as well as the distribution of time intervals be-
tween the instantaneous collisions, P(7). In the experiment
the measurement was made at the wall by using a transducer
positioned a short distance upstream from the hopper open-
ing to detect the impulse transfer as a function of time to that
point on the wall. In the simulation we can separately ana-
lyze data from events located within the bulk, at the walls, or
at a specific point on the wall to mimic the experimental
measurement. For most of our discussion we will focus on
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observations of distributions taken from events occurring in
the bulk of the material. Note that all our measurements
were made in the central, vertical region of the hopper
(5<x<15, 35<y<65) where the slow velocity averaged
over a (snapshot) time had no significant spatial variation.

Both the experiment and the simulation revealed the same
effects in the measured distributions: (i) an increase in the
number of small-impulse events as the flow velocity is de-
creased as well as (ii) an increase in the number of small-
collision-time events as the flow velocity is decreased. In the
impulse distribution in particular, this change could be di-
rectly linked to the appearance of the frequently colliding
clusters pictured above. Additionally, a simple one-
dimensional model was devised that demonstrated how the
existence of linear clusters of particles which collide prima-
rily along the chain direction would lead to the observed
behavior in P(I) [7]. The flow-rate invariant exponential
form of P(I) at large impulse as measured in both experiment
and simulation was shown to be a reflection of the local
velocity distribution, which had an exponential tail (note that
the impulse distribution of uncorrelated particles is essen-
tially the convolution of the individual velocity distribu-
tions). Using the same 1D toy model we were able to dem-
onstrate that the large-impulse region of P(I) is determined
primarily by the form of the velocity distribution as ob-
served.

In the bidisperse system, the picture retains many of its
original features with some added complexity. Defining the

scaled impulse I=1/(I) where (I)=[IP(I)dI we can consider
the behavior of the joint distribution of impulse and collision

time P(1,7). Shown in Fig. 3(a) as a function of I for two
values of 7, several interesting features are seen to emerge.

For both values of 7, P(I, 7) still shows an increase in height
at impulses smaller than the average impulse as the flow
velocity is decreased. However, for 7=1073 the large-impulse
region of the distribution is no longer flow-rate independent
as in the monodisperse system, and an increase in height at
impulses much larger than the average is also visible [23]. As
before, this large-impulse behavior can be linked to an ac-
companying shape change in the velocity distribution [Fig.
3(b)], and is similar to the behavior of P(I) in three-
dimensional molecular dynamics simulations of soft spheres
[24]. The shape of the collision time distribution P(7) is very
broad, and approaches 72 as the flow velocity is slowed.
The nonexponential nature of P(7) implies that the interpar-
ticle collisions are correlated to some extent. These correla-
tions are also reflected in the anomalous diffusivities mea-
sured in experiments on granular drainage [25].

If we look at P(1,7) as a function of 1 for a given flow
velocity, it is evident that the impulse and collision time are
correlated (i.e., small impulses tend to be associated with
small collision times). To clarify the roles played by the fre-
quently colliding and rarely colliding particles in the ob-

served shape changes in P(I,7) we can divide the joint
impulse—collision time distribution into contributions from
these two populations (shown in Fig. 4 for v,=1.13). For this
purpose, based on review of the images we chose a threshold
frequency of 5(v) where (v)=(1/ N)Eﬁv v; and defined all par-
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FIG. 3. (a) Joint impulse—collision time distribution P(,7) at
varying flow velocities. The inset shows the small-impulse region
of the distribution in more detail. Note that the two cuts of P(i, 7)
have been separately normalized for easier comparison. (b) Corre-
sponding velocity distributions P(v,/{v,)).

ticles with collision frequency v; above this threshold as fre-
quently colliding. Rarely colliding particles are similarly de-
fined as particles with 0<<v,;<0.5(»). It appears that the
correlation between impulse and collision time is stronger
for the frequently colliding particles, and that these particles

are the primary contributors to P(I,7) at small 7 and 7 [26].
Additionally, as expected from the observations made on the

large-impulse region of the total P(,7), at longer collision
times and large impulses the shape of the distribution is gov-
erned by the contribution from the rarely colliding particles
[which in turn reflects the shape changes in the velocity dis-
tribution shown in Fig. 3(b)].

The impulse—collision time correlation observed in P(f ,7)
is further evidence that velocities of frequently colliding par-
ticles are correlated with small fluctuations leading to colli-

sions with 7< 1. Note that this correlation in the velocities is
apparent even in the absence of any density inhomogeneity.
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FIG. 4. Impulse distribution P(7,7) showing the separate contri-
bution from the frequently colliding (FC) particles (v;>5(»)) and
the rarely colliding (RC) particles (v;<0.5(»)) at v;=1.13.

The connection between the frequently colliding particles
and the highly stressed particles is not surprising in the con-
text of the impulse—collision time correlation discussed
above, which would give rise to values of \,,>(\). There-
fore the stress heterogeneities seen in Fig. 2 are directly re-

lated to the dynamic correlation reflected in P(7 ,7). Given
that this correlation is seen to become stronger as the flow
velocity decreases, it is reasonable to expect some kind of
flow-rate dependent behavior in time and length scales asso-
ciated with the collisional stress. As previously described,
there does not appear to be any significant change in length
scale of the structures with flow velocity. As a first attempt to
quantify a trend in the time scale, we will calculate the au-
tocorrelation Cy(f) of \,, and determine the dependence of
the time scale for the decay of C,() on vy.

VI. RELAXATION OF STRESS

The autocorrelation of the maximum eigenvalue C,(r)
=(\,,()\,,(0)) of N, is calculated as

1

> ulte) = M) lto + 1) = (N,0))

1y itp

O\m(t) )\m(0)> =

(4)

where (\,,) is the time-averaged value of the maximum ei-
genvalue and N, is the number of time origins f. C\(1)
(shown in Fig. 5 for varying flow velocities) appears to have
three decay regimes: (i) a short power-law regime at small
time 1~ (7), (ii) a longer slow (possibly logarithmic) decay at
intermediate time (7)<t<<1/vy, and (iii) a more complicated
decay at long time > 1/v, which involves a shallow nega-
tive dip. This three-stage form of C,(¢) is reminiscent of
density-density autocorrelations measured in supercooled
liquids at low temperatures [27], which show a power-law
regime at short time scales, a plateau at intermediate time
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FIG. 5. Autocorrelation of maximum eigenvalue \,, of o.(7).
Inset shows the time scale 7 at which (\,,(#)\,,(0))=0.1 plotted
against 1/vy.

scales, and a decay to zero at much longer time scales. This
implies that the intermediate slow decay observed in the
granular system may be resulting from a type of ‘“caging
effect” introduced by the correlated motion of particles par-
ticipating in one of the highly stressed and frequently collid-
ing chains. This type of C,(¢) indicates a growing separation
of time scales as the flow velocity is decreased, which is an
interesting similarity between granular flows and super-
cooled liquids.

We can get a measure of the time scale associated with
this intermediate slow decay of the stress by extracting the
time 7y, at which C,(#) has decayed to 10% of its original
value (i.e Cy(7;)=0.1). Plotting 7,; vs 1/v, (see inset to
Fig. 5) clearly indicates that 7,; diverges as 1/v,. If we
associate this time scale with the lifetime of the highly
stressed spatial structures visible in Fig. 2 then one can see
that as the flow velocity decreases the structures last for in-
creasingly longer times. C,(7) for the frequently colliding
particles only is shown in Fig. 6(a). These curves were cal-
culated by choosing only those time origins 7, where a given
particle had been identified as frequently colliding according
to the criteria defined above (v;>5(v)). Note the particle is
not required to be frequently colliding during the entire time
interval over which C,(¢) is calculated, thus we expect the
long time behavior of these curves to be similar to that of the
entire system. The same three-regime behavior is evident,
but the time scale of the decay 7, is longer (755=27) ).
However, the scaling of the decay time with the flow velocity
is the same [see inset to Fig. 6(a)].

The role of the frequently colliding and highly stressed
particles in determining the shape of the autocorrelation can
be clarified by considering a related system; a one-
dimensional assembly of particles which experience instan-
taneous, binary, inelastic collisions. To establish a steady
state, a fraction of the particles are weakly driven in between
collision events. This 1D system represents an idealized, iso-
lated analog to the frequent-collision chains, and thus the
stress autocorrelation measured in this system should be rep-
resentative of the stress relaxation behavior of these struc-
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FIG. 6. (a) Autocorrelation of maximum eigenvalue \,, of o.(r)
for both the frequently colliding (FC) particles and the whole sys-
tem at v;=2.05 and v;=0.916. Inset shows the time scale 7 at
which (\,,(t)\,,(0))=0.1 plotted against 1/v, for both the FC par-
ticles and the whole system. (b) Stress autocorrelation for 1D
weakly driven inelastic granular gas.

tures [note that o.(r) in the 1D system is a scalar quantity].
C\(?) for the 1D system is shown in Fig. 6(b) [28]. From this
plot it can be seen that the initial stress relaxation is slow and
possibly logarithmic, similar to the slow decay regime of
C,(?) in the 2D flowing system. From this result it appears
that the observed dynamical heterogeneities do dominate the
stress relaxation in the flowing granular system at intermedi-
ate time scales (1) <r<1/vy.

VII. CONCLUSIONS

The picture which is emerging from these simulations is
that large-scale highly stressed structures analogous to force
chains in static systems can form even in a simplified model
of inelastic hard disks. These structures experience a slow
relaxation from collisional stress at intermediate time scales
in a manner analogous to temporal relaxations observed in
glassy systems at low temperatures. Additionally, the time
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scale extracted from measurements of the stress relaxation
curve C,(t) is seen to diverge as 1/v. This time scale can be
associated with the average lifetime of a highly stressed
and/or frequently colliding chain in the system and thus the
chains appear to become infinitely long lived as vy—0.

It is worth noting that a similar search for a relevant
length scale associated with these chains has been more dif-
ficult. Simple two-point spatial correlations of the collisional
stress have not yielded any meaningful results and thus a
higher-order correlation function such as the four-point cor-
relations measured in supercooled liquids [ 10] measured may
be necessary. Initial calculations of spatial velocity correla-
tions in our flowing system have indicated the existence of a
length scale which is increasing as the flow velocity is de-
creased [19]. Preliminary measurements show that this
length scale is of the order of the system size at the slowest
flow velocities measured thus far. Therefore another impor-
tant consideration is finite-size effects; while we have not
explored this issue in this preliminary work, some finite-size
scaling may be useful in accurately determining any measur-
able length scale [29].

As discussed earlier, the trap model picture [14,15] may
provide a framework for describing the dynamics of our
simple granular flow system as well as other supercooled
liquids. Trap models are mean field in nature and describe
activated dynamics characterized by a probability density of
energy barriers and lead to the prediction of trapping time
distributions as external parameters such as temperature are
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varied. To apply these concepts to granular flows, one needs
to identify the “traps” and measure the trapping time distri-
butions in order to identify a specific class of trapping mod-
els. For the system of inelastic disks studied here, we hope to
map the dynamics in the space of the stress tensor to a trap
model. This mapping can predict stress autocorrelation func-
tions in steady state and lead to the identification of dynami-
cal phase transitions.

The appearance of frequently and rarely colliding par-
ticles with the former associated with the highly stressed
regions is reminiscent of the bimodal stress distributions ob-
served in simulations of static, frictional grain packings
[30,31], and lend further credence to the idea that the dy-
namical heterogeneities observed in our simulations are the
precursors to force chains in static granular packings. In the
dynamical situation, the lifetime of the heterogeneities plays
a crucial role and what we have shown is that these hetero-
geneities become extremely long-lived as the average flow
velocity tends to zero.
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